

Class 12 Mathematics – Chapter: Continuity and Differentiability

1. Introduction

- Continuity and differentiability are foundational concepts in calculus.
- They describe smoothness and rate of change of functions.

2. Continuity

- A function $f(x)$ is continuous at $x=a$ if:
 1. $f(a)$ is defined.
 2. $\lim_{x \rightarrow a} f(x) = f(a)$ exists.
 3. $\lim_{x \rightarrow a} f(x) = f(a) = f(a)$.

- **Types of Discontinuity:**

- Removable discontinuity
- Jump discontinuity

- Infinite discontinuity

3. Differentiability

- A function is differentiable at $x=ax = ax=a$ if the derivative $f'(a)f'(a)f'(a)$ exists.

- Derivative defined as:

$$f'(a) = \lim_{h \rightarrow 0} \frac{f(a+h) - f(a)}{h}$$

- Differentiability implies continuity, but not vice versa.

4. Geometric Interpretation

- Continuity means the graph of $f(x)f(x)f(x)$ has no breaks at $x=ax = ax=a$.
- Differentiability means the graph has a defined tangent at $x=ax = ax=a$.

5. Derivative as a Function

- $f'(x)f'(x)f'(x)$ gives the rate of change of fff at any xxx .
-

If $f'(x)$ exists for all x in an interval, f is differentiable on that interval.

6. Examples

- Polynomials are continuous and differentiable everywhere.
- Absolute value function is continuous everywhere but not differentiable at 0.

7. Applications

- Used in optimization problems.
- Understanding behavior of functions.
- Physics: velocity as derivative of position.

8. Exam Tips

- Know the definitions clearly.
- Practice proving continuity and differentiability.
-

Solve problems on limits related to continuity.

- Understand examples of functions with/without differentiability.